ORNL Cross-Section Processing Status Michael E. Dunn, Maurice Greene, Nuclear Science and Technology Division Cross Section Evaluation Working Group Meeting Brookhaven National Laboratory November 4 – 6, 2003 > OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY - ENDF/B-VI Multigroup Library Development - Corrected processing problems with collision kinematics treatment - Corrected various systematic errors in processing procedures - Generated 238-group ENDF/B-VI library for testing - Currently performing various benchmark calculations with the library in the SCALE 5 code system - Good results obtained for various benchmark calculations; however, some results are consistently 1-2% below critical. - Currently investigating multigroup scattering matrices to resolve discrepancies with benchmark results - AMPX developments to support continuous-energy version of KENO V.a - Developed new processing modules to support Point KENO development effort - Point KENO cross-section library components - $\overline{v}(E)$ delayed and prompt - 1-D continuous-energy cross sections as a function of temperature $\sigma(E,T)$ - 2-D joint probability distributions for particle collisions $f(E \rightarrow E', \mu)$ - Probability tables for unresolved resonance region - MONTEGO and JAMAICAN modules - Generate joint probability density functions (PDF) and cumulative distribution functions (CDF) - Produce tabular PDFs and CDFs in lab system - PLATINUM module developed to assemble Point KENO cross-section file for a nuclide - Used AMPX to generate test ENDF/B-VI library for Point KENO - 50 Nuclides ## **Point KENO V.a Testing** Nuclear Science and Technology Division Prototypic Point KENO cross-section data generated for 50 ENDF/B-VI Release 7 nuclides | ²⁷ Al | ⁵² Cr | ⁵⁶ Fe | ⁵⁵ Mn | ³¹ P | ²⁴² Pu | ³⁰ Si | ²³⁸ U | |-------------------|------------------|------------------|------------------|-------------------|-------------------|--------------------|------------------| | ²⁴¹ Am | ⁵³ Cr | ⁵⁷ Fe | Mo | ²³⁶ Pu | ²⁴³ Pu | ²³² U | | | $^{10}\mathrm{B}$ | C | ⁵⁸ Fe | ^{14}N | ²³⁷ Pu | ²⁴⁴ Pu | 233 _U | | | ¹¹ B | ⁶³ Cu | $^{1}\mathrm{H}$ | ²³ Na | ²³⁸ Pu | S | ²³⁴ U | | | Ca | ⁶⁵ Cu | H ₂ O | ⁵⁸ Ni | ²³⁹ Pu | Si | 235U | | | Cd | ¹⁹ F | CH ₂ | 60 Ni | ²⁴⁰ Pu | ²⁸ Si | 236U | | | ⁵⁰ Cr | ⁵⁴ Fe | K | ¹⁶ O | ²⁴¹ Pu | ²⁹ Si | $^{237}\mathrm{U}$ | | ## **Point KENO V.a Testing** Nuclear Science and Technology Division - Point KENO V.a used to calculate 54 different criticality test problems - 33 KENO test problems - Uranium metal (single units and arrays) - Uranyl fluoride and nitrate solutions - Mixed metal and solution problems - Various geometrical and reflector configurations - 21 benchmark problems - LWR-type UO₂ fuel pin lattices - Green-block experiments: homogenized U in paraffin blocks - Uranyl fluoride and nitrate solutions (low and high enriched) - Calculations performed on DEC Alpha XP1000 workstation ## **Point KENO V.a Testing** | | | Nuclear So | cience and Technology Divisi | on (NSTD) | |---------|---|--------------------------------|---|-----------------------------------| | Case ID | Description | Point KENO
ENDF/B-VI Rel. 7 | KENO V.a
199-group
ENDF/B-VI Rel. 3 | KENO V.a
238-group
ENDF/B-V | | cas01 | U(2.35)O ₂ pin lattice | 0.9950 ± 0.0016 | 0.9947 ± 0.0015 | 0.9937 ± 0.0015 | | cas07 | U(2.35)O ₂ pin lattice | 0.9965 ± 0.0018 | 0.9934 ± 0.0016 | 0.9956 ± 0.0015 | | cas19 | U(2.35)O ₂ pin lattice | 1.0008 ± 0.0016 | 0.9937 ± 0.0022 | 0.9903 ± 0.0014 | | cas34 | U(2.46)O ₂ pin lattice | 0.9997 ± 0.0016 | 0.9973 ± 0.0011 | 0.9925 ± 0.0015 | | cas82 | U(2.0) in Paraffin | 1.0003 ± 0.0014 | 1.0241 ± 0.0015 | 1.0021 ± 0.0016 | | cas83 | U(2.0) in Paraffin | 1.0011 ± 0.0019 | 1.0194 ± 0.0017 | 0.9992 ± 0.0017 | | cas84 | U(3.0) in Paraffin | 1.0129 ± 0.0021 | 1.0357 ± 0.0017 | 1.0118 ± 0.0017 | | cas85 | U(3.0) in Paraffin | 1.0177 ± 0.0016 | 1.0407 ± 0.0020 | 1.0123 ± 0.0020 | | cas88 | U(93.2)O ₂ (NO ₃) ₂ | 1.0026 ± 0.0023 | 1.0029 ± 0.0025 | 1.0090 ± 0.0021 |